FEATURES

Two 12-Bit DACs in One Package
DAC Ladder Resistance Matching: 0.5\%
Space Saving Skinny DIP and Surface
Mount Packages
4-Quadrant Multiplication
Low Gain Error (1 LSB max Over Temperature)
Fast Interface Timing

APPLICATIONS

Automatic Test Equipment
Programmable Filters
Audio Applications
Synchro Applications

Process Control

GENERAL DESCRIPTION

The AD 7547 contains two 12-bit current output DAC s on one monolithic chip. Also on-chip are the level shifters, data registers and control logic for easy microprocessor interfacing. There are 12 data inputs. $\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}, \overline{\mathrm{WR}}$ control DAC selection and loading. D ata is latched into the $D A C$ registers on the rising edge of $\overline{\mathrm{WR}}$. The device is speed compatible with most microprocessors and accepts TTL, 74H C and 5 V CM OS logic level inputs.
The D/A converters provide 4-quadrant multiplication capabilities with separate reference inputs and feedback resistors. M onolithic construction ensures that thermal and gain error tracking is excellent. 12-bit monotonicity is guaranteed for both DAC s over the full temperature range.
The AD 7547 is manufactured using the Linear Compatible CM OS (LC ${ }^{2}$ M OS) process. This allows fast digital logic and precision linear circuitry to be fabricated on the same die.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. DAC to DAC M atching Since both DAC s are fabricated on the same chip, precise matching and tracking is inherent. M any applications which are not practical using two discrete DAC s are now possible. Typical matching: 0.5\%.
2. Small Package Size

The AD 7547 is available in 0.3 " wide 24 -pin DIPs and SOICs and in 28-terminal surface mount packages.
3. Wide Power Supply T olerance

The device operates on $a+12 \mathrm{~V}$ to $+15 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$, with $\pm 10 \%$ tolerance on this nominal figure. All specifications are guaranteed over this range.

[^0]
AD7547-SPEC|F|CATONS $\begin{aligned} & \left(\mathrm{V}_{\text {DD }}=+12 \mathrm{~V} \text { to }+15 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=10 \mathrm{~V} ; \mathrm{I}_{\text {OUTA }}=\mathrm{I}_{\text {OUTB }}=\mathrm{AGND}=\right. \\ & \left.0 \mathrm{~V} \text {. All specifications } \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \text { unless otherwise noted. }\right)\end{aligned}$

Parameter	J, A Versions	K, B Versions	L, C Versions	S Version	T Version	U Version	Units	Test Conditions/Comments
ACCURACY								
Resolution	12	12	12	12	12	12	Bits	
Relative Accuracy	± 1	$\pm 1 / 2$	$\pm 1 / 2$	± 1	$\pm 1 / 2$	$\pm 1 / 2$	LSB max	
Differential N onlinearity	± 1	LSB max	All grades guaranteed monotonic over temperature.					
Gain Error	± 6	± 3	± 1	± 6	± 3	± 2	LSB max	Both DAC registers loaded with all 1s.
Gain Temperature C oefficient ${ }^{2}$; $\Delta \mathrm{G}$ ain/ $\Delta \mathrm{T}$ emperature O utput L eakage Current	± 5	ppm/ ${ }^{\circ} \mathrm{C}$ max	T ypical value is $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$					
$\begin{aligned} & \text { IOUTA } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	10	10	10	10	10	10	$n A$ max	D AC A Register loaded
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	150	150	150	250	250	250	$n A$ max	with all 0 s .
$\begin{aligned} & \mathrm{I}_{\text {оUTв }} \\ & \quad+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 250 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 250 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 250 \\ \hline \end{array}$	$n A \max$ nA max	D AC B Register loaded with all 0 s .
REFERENCE INPUT Input Resistance	$\begin{aligned} & 9 \\ & 20 \end{aligned}$	$\begin{array}{\|l} 9 \\ 20 \end{array}$	$\begin{array}{\|l} 9 \\ 20 \end{array}$	$\begin{array}{\|l} \hline 9 \\ 20 \end{array}$	$\begin{array}{\|l} 9 \\ 20 \end{array}$	$\begin{aligned} & 9 \\ & 20 \end{aligned}$	$k \Omega$ min $k \Omega$ max	Typical Input Resistance $=14 \mathrm{k} \Omega$
$\begin{aligned} & \mathrm{V}_{\text {REFA }}, \mathrm{V}_{\text {REFB }} \\ & \quad \text { Input Resistance } M \text { atch } \end{aligned}$	± 3	± 3	± 1	± 3	± 3	± 1	\% max	T ypically $\pm 0.5 \%$
DIGITAL INPUTS								
$\mathrm{V}_{\text {IH }}$ (Input High Voltage)	2.4	2.4	2.4	2.4	2.4	2.4	V min	
$V_{\text {IL }}$ (Input L ow Voltage)	0.8	0.8	0.8	0.8	0.8	0.8	V max	
$\mathrm{I}_{\text {IN }}$ (Input Current)			1					
$+25^{\circ} \mathrm{C}$	± 1	$\mu \mathrm{A}$ max	$V_{\text {IN }}=V_{\text {DD }}$					
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$	± 10	$\mu \mathrm{A}$ max						
$\mathrm{C}_{\text {IN }}\left(\right.$ Input C apacitance) ${ }^{2}$	10	10	10	10	10	10	pF max	
POWER SUPPLY ${ }^{3}$								
$V_{D D}$	10.8/16.5	10.8/16.5	10.8/16.5	10.8/16.5	10.8/16.5	10.8/16.5	$V \min N$ max	
$\underline{I_{D D}}$	2	2					mA max	

AC PERFORMANCE CHARACTERISTICS

These characteristics are included for Design Guidance only and are not subject to test.
$\left(\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}\right.$ to $+15 \mathrm{~V} ; \mathrm{V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=+10 \mathrm{~V}, \mathrm{I}_{\text {OUTA }}=\mathrm{I}_{\text {OUTB }}=\mathrm{AGND}=0 \mathrm{~V}$. Output Amplifiers are AD644 except where noted.)

Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	Units	Test Conditions/Comments
Output Current Settling Time	1.5		$\mu \mathrm{S}$ max	To 0.01% of full-scale range. I IOUT load $=100 \Omega, C_{E X T}=13 \mathrm{pF}$. DAC output measured from rising edge of $\overline{\mathrm{WR}}$. Typical Value of Settling Time is $0.8 \mu \mathrm{~s}$.
Digital-to-Analog G litch Impulse	7		nV-s typ	M easured with $V_{\text {REFA }}=V_{\text {REFB }}=0 \mathrm{~V}$. I I OUTA, $I_{\text {OUTB }}$ load $=100 \Omega, \mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}$. DAC registers alternately loaded with all 0 s and all 1 s .
AC Feedthrough ${ }^{4}$ $V_{\text {Refa }}$ to $I_{\text {outa }}$ $V_{\text {Refb }}$ to $I_{\text {outb }}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{aligned} & -65 \\ & -65 \end{aligned}$	dB max dB max	$\mathrm{V}_{\text {REFA }}, \mathrm{V}_{\text {REFB }}=20 \mathrm{Vp}$-p, 10 kHz sine wave. DAC registers loaded with all 0 s .
Power Supply Rejection $\Delta \mathrm{G}$ ain $/ \Delta \mathrm{V}_{\mathrm{DD}}$	± 0.01	± 0.02	\% per \% max	$\Delta V_{D D}=V_{D D} \max -V_{D D} \min$
Output C apacitance Couta Coutb Couta Coutb	$\begin{aligned} & 70 \\ & 70 \\ & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 140 \\ & 140 \end{aligned}$	pF max pF max pF max pF max	DAC A, DAC B loaded with all Os. DAC A, DAC B loaded with all 1 s .
$\begin{aligned} & \text { Channel-to-C hannel Isolation } \\ & V_{\text {REFA }} \text { to } I_{\text {OUTB }} \\ & V_{\text {REFB }} \text { to I IOUTA } \end{aligned}$	-84 -84		dB typ dB typ	$\mathrm{V}_{\text {REFA }}=20 \mathrm{~V}$ p-p 10 kHz sine wave, $\mathrm{V}_{\text {Refb }}=0 \mathrm{~V}$. Both DACs loaded with all 1 s . $\mathrm{V}_{\text {Refb }}=20 \mathrm{~V}$ p-p 10 kHz sine wave, $\mathrm{V}_{\text {Refa }}=0 \mathrm{~V}$. Both DACs loaded with all 1 s .
Digital C rosstalk	7		nV -s typ	M easured for a Code Transition of all 0 s to all 1 s . $\mathrm{I}_{\text {Outa }}, \mathrm{I}_{\text {outb }}$ Load $=100 \Omega, \mathrm{C}_{\text {EXT }}=13 \mathrm{pF}$
Output Noise Voltage Density ($10 \mathrm{~Hz}-100 \mathrm{kHz}$)	25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ typ	M easured between $R_{\text {FbA }}$ and $I_{\text {OUtA }}$ or $R_{\text {Fbв }}$ and $I_{\text {оитв }}$. F requency of measurement is $10 \mathrm{~Hz}-100 \mathrm{kHz}$.
T otal H armonic Distortion	-82		dB typ	$\mathrm{V}_{\text {IN }}=6 \mathrm{Vrms}, 1 \mathrm{kHz}$. Both DACs loaded with all 1 s .

NOTES
${ }^{1}$ T emperature range as follows: J, K, L Versions, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; A, B, C Versions, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; $\mathrm{S}, \mathrm{T}, \mathrm{U}$ Versions, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
${ }^{3}$ Functional at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ with degraded specifications.
${ }^{4}$ Pin 12 (DGND) on ceramic DIPs is connected to lid.
Specifications subject to change without notice.

TIMING CHARACTERISTICS ${ }_{\left(V_{D O}\right.}=10.8 \mathrm{~V}$ to $16.5 \mathrm{~V}, \mathrm{~V}_{\text {REEA }}=\mathrm{V}_{\text {REFB }}=+10 \mathrm{~V}, \mathrm{I}_{\text {OUTA }}=I_{\text {OUIB }}=A G N D=0 \mathrm{~V}$

Parameter	Limit at $T_{A}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Limit at } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Limit at $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
t_{1}	60	80	80	ns min	D ata Setup T ime
t_{2}	25	25	25	ns min	D ata H old T ime
t_{3}	80	80	100	ns min	Chip Select to W rite Setup T ime
t_{4}	0	0	0	ns min	Chip Select to W rite H old T ime
t_{5}	80	80	100	ns min	W rite Pulse W idth

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

$\mathrm{V}_{\text {Refa }}, \mathrm{V}_{\text {REFb }}$ to $A G N D$................................ $\pm 25 \mathrm{~V}$
$V_{\text {RFba }}, V_{\text {RFbb }}$ to $A G N D$............................... 25 V
Digital Input Voltage to DGND $\ldots-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$I_{\text {outa }} I_{\text {outb }}$ to $\operatorname{DGND} \ldots$.
AGND to DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation (Any Package)
To $+75^{\circ} \mathrm{C}$. 450 mW

Operating T emperature Range
Commercial Plastic (J, K, L Versions) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Industrial Hermetic (A, B, C Versions) ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended Hermetic ($\mathrm{S}, \mathrm{T}, \mathrm{U}$ Versions) ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead T emperature (Soldering, 10 secs) $+300^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table I. AD 7547 Truth Table

$\overline{\text { CSA }}$	$\overline{\text { CSB }}$	$\overline{\text { WR }}$	FUNCTION
X	X	1	No D ata T ransfer
1	1	X	No D ata T ransfer
5	5	0	A Rising Edge on $\overline{\mathrm{CSA}}$ or $\overline{\mathrm{CSB}}$ Loads D ata to the Respective DAC from the D ata Bus
0	1	5	D AC A Register L oaded from D ata Bus
1	0	5	DAC B Register Loaded from Data Bus
0	0	5	DAC A and DAC B Registers Loaded from D ata Bus
NOTES 1. $X=$ Don't care. 2. $₹$ means rising edge triggered.			

NOTES

1. ALL INPUT SIGNAL RISE AND FALL TIMES MEASURED FROM $\mathbf{1 0 \%}$ TO 90% OF $+5 \mathrm{~V} . \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$.
2. TIMING MEASUREMENT REFERENCE LEVEL IS $\frac{V_{i H}+V_{I L}}{2}$

Figure 1. Timing Diagram
ORDERING GUIDE ${ }^{1}$

Model ${ }^{2}$	Temperature Range	Relative Accuracy	Gain Error	Package Option ${ }^{3}$
AD 7547JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 1 LSB	$\pm 6 \mathrm{LSB}$	N-24
AD 7547K N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 3 LSB	N-24
AD 7547L N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	± 1 LSB	N-24
AD 7547JP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	P-28A
AD 7547K P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 3 LSB	P-28A
AD 7547LP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 1 LSB	P-28A
AD 7547JR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 1 LSB	$\pm 6 \mathrm{LSB}$	R-24
AD 7547KR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 3 LSB	R-24
AD 7547LR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	± 1 LSB	R-24
AD7547AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 1 LSB	$\pm 6 \mathrm{LSB}$	Q-24
AD7547BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	± 3 LSB	Q-24
AD7547CQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 1 LSB	Q-24
AD7547SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 1 LSB	$\pm 6 \mathrm{LSB}$	Q-24
AD7547T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	± 3 LSB	Q-24
AD7547U Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 2 LSB	Q-24
AD7547SE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 1 LSB	± 6 LSB	E-28A
AD7547TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 3 LSB	E-28A
AD 7547UE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 2 \mathrm{LSB}$	E-28A

NOTES

${ }^{1}$ Analog D evices reserves the right to ship ceramic packages ($D-24 A$) in lieu of cerdip packages (Q-24).
${ }^{2}$ T o order M IL-ST D-883, C lass B processed parts, add /883B to part number. Contact your local sales office for military data sheets.
${ }^{3} E=$ Leadless C eramic C hip C arrier; N = Plastic DIP; P = Plastic Leaded C hip Carrier; $\mathrm{Q}=$ Cerdip; $\mathrm{R}=\mathrm{SO}$ IC.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7547 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

LCCC

PLCC

PIN FUNCTION DESCRIPTION (DIP)

Pin	Mnemonic	Description
1	AGND	Analog Ground.
2	I OUTA	Current output terminal of DAC A.
3	$\mathrm{R}_{\text {FBA }}$	F eedback resistor for DAC A.
4	$\mathrm{V}_{\text {REFA }}$	Reference input to DAC A.
5	$\overline{\mathrm{CSA}}$	Chip Select Input for DAC A. Active low.
6-18	DB0-DB11	12 data inputs, D B0 (LSB)-DB11 (M SB).
12	DGND	Digital Ground.
19	WR	Write Input. D ata transfer occurs on rising edge of $\overline{\mathrm{WR}}$. See T able I.
20	$\overline{\text { CSB }}$	Chip Select Input for DAC B. Active low.
21	$V_{\text {D }}$	Power supply input. N ominally +12 V to +15 V with $\pm 10 \%$ tolerance.
22	$V_{\text {Refb }}$	Reference input to DAC B.
23	$\mathrm{R}_{\text {FbB }}$	F eedback resistor of DAC B.
24	Ioutb	Current output terminal of DAC B.

CIRCUIT INFORMATION

D/A SECTION

The AD 7547 contains two identical 12 -bit multiplying D / A converters. Each DAC consists of a highly stable R-2R ladder and 12 N -channel current steering switches. Figure 2 shows a simplified D/A circuit for DAC A. In the R-2R ladder, binary weighted currents are steered between I OUTA and AGND. The current flowing in each ladder leg is constant, irrespective of switch state. The feedback resistor $\mathrm{R}_{\text {fba }}$ is used with an op amp (see Figures 4 and 5) to convert the current flowing in Iouta to a voltage output.

Figure 2. Simplified Circuit Diagram for DAC A

EQUIVALENT CIRCUIT ANALYSIS

Figure 3 shows the equivalent circuit for one of the D / A converters (DAC A) in the AD 7547. A similar equivalent circuit can be drawn for DAC B. N ote that AGND is common to both $D A C A$ and DAC B.

Figure 3. Equivalent Analog Circuit for DAC A
$\mathrm{C}_{\text {out }}$ is the output capacitance due to the N -channel switches and varies from about 50 pF to 150 pF with digital input code. The current source $I_{\text {LKG }}$ is composed of surface and junction leakages and approximately doubles every $10^{\circ} \mathrm{C}$. R_{0} is the equivalent output resistance of the device which varies with input code.

DIGITAL CIRCUIT INFORMATION

The digital inputs are designed to be both TTL and 5 V CM OS compatible. All logic inputs are static-protected M OS gates with typical input currents of less than 1 nA .

UNIPOLAR BINARY OPERATION

 (2-QUADRANT MULTIPLICATION)Figure 4 shows the circuit diagram for unipolar binary operation. With an ac input, the circuit performs 2-quadrant multiplication. The code table for Figure 4 is given in Table II.

Operational amplifiers A1 and A2 can be in a single package (AD 644, AD 712) or separate packages (AD 544, AD 711, AD OP27). Capacitors C1 and C2 provide phase compensation to help prevent overshoot and ringing when high speed op amps are used.
For zero offset adjustment, the appropriate DAC register is loaded with all 0 s and amplifier offset adjusted so that $\mathrm{V}_{\text {Outa }}$ or $\mathrm{V}_{\text {оutв }}$ is 0 V . Full-scale trimming is accomplished by loading the D AC register with all 1s and adjusting R1 (R3) so that $\mathrm{V}_{\text {OUTA }}\left(\mathrm{V}_{\text {OUtB }}\right)=-\mathrm{V}_{\text {IN }}(4095 / 4096)$. F or high temperature operation, resistors and potentiometers should have a low Temperature C oefficient. In many applications, because of the excellent G ain T.C. and G ain Error specifications of the AD 7547, G ain Error trimming is not necessary. In fixed reference applications, full-scale can also be adjusted by omitting R1, R2, R3, R 4 and trimming the reference voltage magnitude.

Figure 4. Unipolar Binary Operation
Table II. Unipolar Binary Code Table for Circuit of Figure 4

Binary Number In DAC Register MSB	LSB Vouta Or V
111111111111	$-V_{\text {IN }}\left(\frac{4095}{4096}\right)$
100000000000	$-V_{\text {IN }}\left(\frac{2048}{4096}\right)=-1 / 2 \mathrm{~V}_{\text {IN }}$
000000000001	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{4096}\right)$
000000000000	0 V

BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)

The recommended circuit diagram for bipolar operation is shown in Figure 5. Offset binary coding is used.
With the appropriate DAC register loaded to 100000000000 , adjust R1 (R3) so that $\mathrm{V}_{\text {outa }}\left(\mathrm{V}_{\text {out }}\right)=0 \mathrm{~V}$. Alternatively, R1, R2 (R3, R4) may be omitted and the ratios of R6, R 7 (R9, R 10) varied for $\mathrm{V}_{\text {OUT }} \mathrm{A}\left(\mathrm{V}_{\text {OUTB }}\right)=0 \mathrm{~V}$. Full-scale trimming can be accomplished by adjusting the amplitude of V_{IN} or by varying the value of R5 (R8).
If R1, R2 (R3, R4) are not used, then resistors R5, R6, R 7 (R8, R9, R10) should be ratio matched to 0.01% to ensure gain error performance to the data sheet specification. When operating over a wide temperature range, it is important that the resistors be of the same type so that their temperature coefficients match.
The code table for Figure 5 is given in T able III.

Figure 5. Bipolar Operation (Offset Binary Coding)
Table III. Bipolar Code Table for Offset Binary Circuit of Figure 5

| Binary Number In
 DAC Register
 MSB | LSB |
| :--- | :--- |\quad| Analog Output, |
| :--- |
| VOUTA $^{\text {or } V_{\text {OUTB }}}$ |

AD7547- Applications

PROGRAMMABLE STATE VARIABLE FILTER

The circuit shown in Figure 6 provides three filter outputs: low pass, high pass and bandpass. It is called a State V ariable Filter and the particular version shown in F igure 6 uses two AD 7547s to control the critical parameters $\mathrm{f}_{0}, \mathrm{Q}$ and A_{0}. Instead of several fixed resistors, the circuit uses the DAC equivalent resistances as circuit elements. Thus, R1 in Figure 6 is controlled by the 12-bit digital word loaded to DAC A of the AD 7547. This is also the case with R2, R3 and R4. The fixed resistor R5 is the feedback resistor, $R_{\text {Fbв }}$.

DAC Equivalent Resistance, $\mathrm{Req}=\frac{4096 \times R_{\text {LAD }}}{\mathrm{N}}$
where $R_{\text {LAD }}=\mathrm{DAC}$ Ladder Resistance

$$
N=D A C \text { Digital C ode in Decimal. }(0<N<4095)
$$

In the circuit of F igure 6:
$\mathrm{C} 1=\mathrm{C} 2, \mathrm{R} 7=\mathrm{R} 8, \mathrm{R} 3=\mathrm{R} 4$ (i.e., the same code is in each DAC)

Resonant frequency, $f_{0}=\frac{1}{2 \pi R 3 C 1}$
Quality Factor, $\mathrm{Q}=\frac{\mathrm{R} 6}{\mathrm{R} 8} \times \frac{\mathrm{R} 2}{\mathrm{R} 5}$
Bandpass G ain, $A_{0}=\frac{-R 2}{R 1}$
U sing the values shown in Figure 6 the Q range is 0.3 to 5 and f_{0} range is 0 kHz to 12 kHz .

Figure 6. Programmable State Variable Filter

SINGLE SUPPLY APPLICATIONS

DAC A and DAC B of the AD 7547 have termination resistors which are tied to the AGND line within the device. This arrangement is ideal for single supply operation because AGND may be biased at any voltage between DGND and V_{DD}. Figure 7 shows a circuit which provides two +5 V to +10 V analog outputs by biasing AGND to +5 V with respect to DGND , which in this case is also the system ground. The two DAC reference inputs are also tied to system ground.

Figure 7. AD7547 Single Supply Operation
The transfer function for each channel is:

$$
\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}\left(1+\frac{\mathrm{R}_{\mathrm{FB}}}{\mathrm{R}_{\mathrm{EQ}}}\right)
$$

With all Os loaded to the $D A C, R_{E Q}=\infty$ and $V_{\text {OUT }}=+5 \mathrm{~V}$. With all 1 s loaded $R_{E Q}=R_{\text {LADDER }}=R_{F b}$ and $V_{\text {OUt }}=+10 \mathrm{~V}$. Figure 8 shows both DACs of the AD 7547 connected in the voltage switching mode. For further information on this mode of operation see the CM OS DAC Application Guide from A nalog D evices, publication number G872a-15-4/86. T o optmize performance when using this circuit, $\mathrm{V}_{\text {IN }}$ must be in the range 0 V to +1.25 V and the output buffered. $\mathrm{V}_{\text {IN }}$ must be driven from a low impedance source (e.g., a buffer amplifier). Figure 9 shows how differential linearity degrades with increasing V_{IN}.

Figure 8. AD7547 Operated in Single Supply, Voltage Switching Mode

Figure 9. Differential Nonlinearity vs. Reference Voltage for Circuit of Figure 8. $V_{D D}=15 \mathrm{~V}$. Shaded Area Shows Range of Values of Differential Nonlinearity that Typically Occur for L, C and U Grades

APPLICATION HINTS

Output Offset: CM OS D/A converters in circuits such as Figures 4 and 5 exhibit a code dependent output resistance which in turn can cause a code dependent error voltage at the output of the amplifier. The maximum amplitude of this error, which adds to the D / A converter nonlinearity, depends on $\mathrm{V}_{0 \mathrm{~s}}$, where $V_{0 s}$ is the amplifier input offset voltage. To maintain specified operation, it is recommended that $\mathrm{V}_{\text {OS }}$ be no greater than ($25 \times$ $\left.10^{-6}\right)\left(V_{\text {REF }}\right)$ over the temperature range of operation. Suitable op amps are the AD 711C and its dual version, the AD 712C. These op amps have a wide bandwidth and high slew rate and are recommended for wide bandwidth ac applications. AD 711/ AD 712 settling time to 0.01% is typically $1 \mu \mathrm{~s}$.
Temperature Coefficients: T he gain temperature coefficient of the AD 7547 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and typical value of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to worst case gain shifts of 2 LSBs and 0.4 LSBs respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors $\mathrm{R} 1(\mathrm{R} 3)$ and $\mathrm{R} 2(\mathrm{R} 4)$ are used to adjust full-scale range as in Figure 4, the temperature coefficient of R1(R3) and R2(R4) should also be taken into account. For further information see "Gain Error and Gain Temperature C oefficient of CMOS M ultiplying DACs", Application N ote, Publication Number E630c-5-3/86 available from Analog D evices.
High Frequency Considerations: AD 7547 output capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This can cause ringing or oscillation. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor. This is shown as C 1 and C 2 in Figures 4 and 5 .
Feedthrough: T he dynamic performance of the AD 7547 depends upon the gain and phase stability of the output amplifier, together with the optimum choice of PC board layout and decoupling components. A suggested printed circuit layout for Figure 4 is shown in Figure 10 which minimizes feedthrough from $\mathrm{V}_{\text {REFA }}, \mathrm{V}_{\text {REFB }}$ to the output in multiplying applications.

Figure 10. Suggested Layout for Circuit of Figure 4

MICROPROCESSOR INTERFACING

The AD 7547 is designed for easy interfacing to 16 -bit microprocessors. Figures 11 and 12 show the interface circuits for two of the most popular 16-bit microprocessors; the 8086 and the 68000. N ote that the amount of external logic needed is minimal.

Since data is loaded into the DAC registers on the rising edge of WR, the possibility of invalid data being loaded temporarily to the DAC is removed. This considerably eases the interface circuit design.

Figure 11. AD7547-MC68000 Interface

Figure 12. AD7547-8086 Interface

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

24-Pin Plastic DIP (N -24)

24-Pin Cerdip (Q-24)

24-Pin Ceramic DIP (D-24A)

28-Terminal Leadless Ceramic Chip Carrier (E-28A)
 2. APPLIES TO ALL FOUR SIDES.
3. ALL TERMINALS ARE GOLD PLATED.

28-Terminal Plastic Leaded Chip Carrier
(P-28A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

